Lower Semicontinuous Differential Inclusions with State Constrains 1

نویسندگان

  • Tzanko Donchev
  • Radostin Ivanov
  • T. Donchev
  • R. Ivanov
چکیده

The main purpose of the present paper is to impose onesided Lipschitz condition for differential inclusions on a closed and convex domain of a uniformly convex Banach space. Both differential inclusions with almost upper demicontinuous and almost lower semicontinuous right–hand sides are considered. The existence theorems are proved and it is shown that the set of solutions is connected. AMS Mathematics Subject Classification (1991): Primary: 34A20, Secondary: 34A60, 34E15

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regular and Singular Perturbations of Upper Semicontinuous Differential Inclusion

In the paper we study the continuity properties of the solution set of upper semicontinuous differential inclusions in both regularly and singularly perturbed case. Using a kind of dissipative type of conditions introduced in [1] we obtain lower semicontinuous dependence of the solution sets. Moreover new existence result for lower semicontinuous differential inclusions is proved.

متن کامل

On The Solution Sets Of Semicontinuous Quantum Stochastic Differential Inclusions∗

The aim of this paper is to provide a unified treatment of the existence of solution of both upper and lower semicontinuous quantum stochastic differential inclusions. The quantum stochastic differential inclusion is driven by operatorvalued stochastic processes lying in certain metrizable locally convex space. The unification of solution sets to these two discontinuous non-commutative stochast...

متن کامل

Viable Solutions for Second Order Nonconvex Functional Differential Inclusions

We prove the existence of viable solutions for an autonomous second-order functional differential inclusions in the case when the multifunction that define the inclusion is upper semicontinuous compact valued and contained in the subdifferential of a proper lower semicontinuous convex function.

متن کامل

Existence Results for Impulsive Functional and Neutral Functional Differential Inclu- Sionswith Lower Semicontinuous Righthand Side

In this paper, Schaefer’s fixed point theorem combined with a selection theorem due to Bressan and Colombo is used to investigate the existence of solutions for first and second order impulsive functional and neutral differential inclusions with lower semicontinuous and nonconvex-valued right-hand side.

متن کامل

ACTA UNIVERSITATIS APULENSIS No 9/2005 AN EXISTENCE RESULT FOR A CLASS OF NONCONVEX FUNCTIONAL DIFFERENTIAL INCLUSIONS

Let σ be a positive number and Cσ := C([−σ, 0], R) the Banach space of continuous functions from [−σ, 0] into R and let T (t) be the operator from C([−σ, T ], R) into Cσ, defined by (T (t)x)(s) := x(t + s), s ∈ [−σ, 0]. We prove the existence of solutions for functional differential inclusion(differential inclusions with memory) x′ ∈ F (T (t)x) + f(t, T (t)x) where F is upper semicontinuous, co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002